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ABSTRACT Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb),
remains a leading infectious disease-related cause of death worldwide, necessitating the
development of new and improved treatment regimens. Nonclinical evaluation of candi-
date drug combinations via the relapsing mouse model (RMM) is an important step in
regimen development, through which candidate regimens that provide the greatest
decrease in the probability of relapse following treatment in mice may be identified for
further development. Although RMM studies are a critical tool to evaluate regimen effi-
cacy, making comprehensive “apples to apples” comparisons of regimen performance in
the RMM has been a challenge in large part due to the need to evaluate and adjust for
variability across studies arising from differences in design and execution. To address
this knowledge gap, we performed a model-based meta-analysis on data for 17 unique
regimens obtained from a total of 1592 mice across 28 RMM studies. Specifically, a
mixed-effects logistic regression model was developed that described the treatment du-
ration-dependent probability of relapse for each regimen and identified relevant covari-
ates contributing to interstudy variability. Using the model, covariate-normalized metrics
of interest, namely, treatment duration required to reach 50% and 10% relapse probabil-
ity, were derived and used to compare relative regimen performance. Overall, the
model-based meta-analysis approach presented herein enabled cross-study comparison
of efficacy in the RMM and provided a framework whereby data from emerging studies
may be analyzed in the context of historical data to aid in selecting candidate drug
combinations for clinical evaluation as TB drug regimens.

KEYWORDS tuberculosis, relapsing mouse model,Mycobacterium, model-based meta-
analysis, modeling and simulation

M ycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects
an estimated one-quarter of the world’s population, and causes an estimated 1.4

million TB-related deaths per year, making it the leading worldwide cause of death
due to a single infectious disease excluding severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) (1–3). Despite a few successes in the past decade in bringing for-
ward new treatments for drug-resistant pulmonary TB (4–6), progress in advancing
new drugs and regimens for pulmonary TB has been limited. The standard-of-care
treatment regimen for drug-susceptible pulmonary TB, based on the combination of
isoniazid, rifampin, pyrazinamide, and ethambutol, remains essentially unchanged for
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more than 30 years (7). While the regimen is efficacious (;90% cure rates in a clinical
trial setting), its complexity, long treatment duration, often poor tolerability, and
requirement for high adherence to minimize treatment failure represent gaps that
must be addressed through the development of novel treatment regimens. Treatment
with the standard regimen is typically 6 months and may be up to 9 months in dura-
tion. The major aim of ongoing TB drug research is to develop markedly shorter treat-
ments (e.g., less than 2 months) to improve adherence and overall cure rates.

To accelerate progress in fighting the global TB pandemic, organizations such as
the Bill and Melinda Gates Foundation have worked to promote renewed interest in TB
drug development through funding collaborative efforts to accelerate the develop-
ment of new drug regimens. One such effort, the Critical Path to TB Drug Regimens
(CPTR) Initiative, was formed to facilitate the development of new tools and methodol-
ogies for use in TB drug and regimen development (8). Since its inception, a primary
focus of the CPTR Initiative has been the aggregation and standardization of clinical
and nonclinical data sets to enable pooled analyses of existing data on TB drug regi-
mens. These analyses, such as the TB-ReFLECT meta-analysis (9), provide greater insight
into questions underlying the research and development of new drugs and regimens
to guide the design of new studies and selection of regimens for further evaluation.

The recent uptick in investment and collaborative efforts in TB research and devel-
opment has resulted in the identification of numerous drug candidates with potential
for efficacy in the treatment of both drug-susceptible and drug-resistant TB. Given the
multitude of potential combinations of existing and novel drugs, the prioritization of
candidate regimens is now a significant challenge, especially for candidate regimens
for which clinical data are not yet available for one or more regimen components. The
selection of such novel regimens for further advancement into clinical studies relies
heavily on the comparison of nonclinical efficacy studies (10), particularly the relative
performance of regimens in achieving nonrelapsing cures. This endpoint is commonly
assessed using the relapsing mouse model (RMM) (11), a murine model of TB which
tests the overall curative potential of a drug combination by evaluating the proportion
of mice exhibiting relapse following different treatment durations. In the RMM, relapse
is defined as recurrence of Mtb growth in cultures of the lung (and sometimes spleen)
tissue samples obtained postsacrifice after a posttreatment clearance period of typi-
cally three to 6 months. Although this definition of relapse implies the occurrence of
no culture growth at the end of treatment, repeated tissue sampling of Mtb growth is
not possible in individual mice, and operationally this is not an absolute requirement
to determine the treatment duration required to prevent relapse. Comparison of regi-
mens in the RMM is typically done by rank-ordering based on the overall proportion of
relapse at various treatment durations. Depending on the effect size, regimens that ex-
hibit lower proportions of relapse following the completion of treatment and/or similar
proportions of relapse following shorter treatment durations may be considered
potential improvements upon the standard of care regimens and, thus, may be consid-
ered for clinical evaluation.

Although RMM studies are a critical tool in comparing regimen performance, the model
has limitations regarding study duration, design heterogeneity, and overall utility for deci-
sion-making. Designs can vary widely from lab to lab, with differences across multiple design
elements such as mouse strain, bacterial strain, inoculation dose and route, recovery dura-
tion, and bacterial culture methods. These interstudy differences, not to mention regimen-
specific differences in treatment duration and dose selection, contribute to the observation
that the efficacy of a specific regimen in the RMM can vary widely from study to study, even
within the same lab, confounding decision-making (11–13). This interstudy variability obvi-
ates the comparison of regimens across studies, which is a key limitation when attempting
to prioritize regimens because logistical considerations typically limit RMM studies to the
evaluation of only a limited number of regimens in a study. Moreover, the analysis of regi-
men performance within a given study has historically utilized conventional group-to-group
statistical comparisons designed to evaluate the proportion of mice relapsing at a relatively
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small number of treatment durations (e.g., three to five). Lenaerts et al. (14) demonstrated
that the RMM requires at least 15 animals per regimen to detect a 50% reduction in relapse
probability at a given treatment duration with at least 80% power. This analytical strategy
based upon a point-by-point comparison of relapsing proportions limits the utility of the
model as the differences between candidate regimens are often much smaller. Further, the
focus on comparative efficacy at prespecified treatment durations requires careful selection
of multiple treatment durations (and larger numbers of mice) to be tested to ensure identifi-
cation of regimens that achieve significant rates of cure (e.g., 10% or lower probability of
relapse) with a shorter treatment duration than the current standard of care regimen.

The objective of this work, which was based on data from a total of 28 studies con-
ducted in two separate laboratories, was to develop a suitable model-based regression
approach to (i) determine the treatment duration-dependent relapse probability pro-
files for the included drug regimens, (ii) quantify the magnitude of interstudy variability
in treatment response and assess the impact of study-level covariates on treatment
response, and (iii) calculate key metrics of interest, namely, treatment duration
required to reach 50% and 10% relapse probability (T50 and T10, respectively) for com-
parison of relative regimen performance in the RMM when adjusted for study-level
covariates. By applying a model-based analysis, it was expected that interstudy differ-
ences could be accounted for and unbiased estimates of informative parameters, such
as T10, could be reported to support decision-making. Importantly, the model-based
approach was also expected to yield uncertainty in parameters, such as T10, which will
be a function of the amount of and consistency in available data, further contributing
to informed decision-making.

RESULTS
Exploratory data analysis. Data from 1310 mice were included in the first stage of

the analysis of 25 studies, with data from three more studies contributing an additional
282 mice added in the second stage, for a total of 1592 mice across 28 studies.
Summary statistics across all studies in the analysis are shown in Table 1, with a further
summary of data for each regimen provided in Table 2.

Observed relapse proportions for each regimen by treatment duration are shown in
Fig. 1, where results are grouped by study and stratified by contributing laboratory.
Significant variability in response was observed across studies, which was visible during ex-
ploratory analysis for the most utilized control regimen, HRZ/HR . As judged by the graphic
depiction of raw data, the HRZ/HR treatment duration to reach 50% relapse probability
(i.e., 50% proportion of mice exhibiting relapse) ranged from less than 2.5 months to
greater than 4.5 months. This observation is consistent with previous observations of vari-
able treatment response for regimens across studies by using different mouse models (12)
and is expected given the differences in study design and covariates. To quantify the mag-
nitude of the interstudy variability and investigate which covariates may be potential sour-
ces of variability, a mixed-effects logistic regression modeling approach was applied under
the assumption of logit-linearity (confirmed before analysis; Fig. S1).

Model development and evaluation. To improve the overall utility of RMM study
data and interpretation for regimen prioritization, the CPTR Initiative applied modeling
and simulation-based techniques to the analysis of RMM study data across multiple
pooled, historical data sets. Key steps in model development are summarized in Table 3,
which lists the pivotal model runs from the primary analysis stage. As expected, the
inclusion of treatment-specific intercept (INT) and slope (SLP) terms greatly improved
the model fit compared to a “naïve” model, including shared INT and SLP terms across
all treatments and study as a random effect on both INT and SLP. Subsequent model
simplification to group similar treatments to improve model stability before covariate
analysis further reduced the Akaike’s information criterion (AIC) value of the model.
Stepwise covariate analysis resulted in the identification of inoculum amount (INOC) and
average baseline lung bacterial burden (BASE) as significant covariates on INT and SLP,
respectively. This further reduced both the objective function value (OFV) and the AIC
values and eliminated trends in goodness-of-fit plots of random effects (h j values) versus
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covariates (not shown). Further, the inclusion of these covariates accounted for a signifi-
cant amount of interstudy variability, decreasing the interstudy standard deviation esti-
mates for INT (v INT) and SLP (v SLP) by 37% and 23%, respectively. Subsequent model
refinements during the primary analysis phase focused on separating INT and/or SLP
terms for treatment regimens that were grouped before covariate analysis while main-
taining model stability. This was done to support our primary objective of extracting
treatment duration-dependent relapse probability profiles from the model to assess dif-
ferences in response between regimens and resulted in further model improvements. In
the second stage of the analysis, the model was updated to support the inclusion of
additional data sets that became available during the project. This update included the
addition of treatment-specific INT and SLP terms for the BPa and BPaL regimens not
included in the original data set but did not result in any further modification of the

TABLE 1 Summary statistics for study-level data

Variables Statistics
Total no. of mice Median: 45 mice

Range: 13–165 mice

Total no. of regimens Median: 1.5 regimens
Range: 1–6 regimens

Treatment duration Median: 4 mo
Range: 2–9 mo

Mice per time point per regimen Median: 15 mice
Range: 8–41 mice

The lower limit of detection on solid media Median: 0.3 log10 CFU
Range: 0.3–1.18 log10 CFU

Plated lung portion Median: 1.0
Range: 0.07–1.00

Infection duration before treatment Median: 19 days
Range: 13–56 days

Culture incubation duration Median: 37 days
Range: 20–62 days
Missing: 5.6%

Inoculum size Median: 3.29 log10 CFU
Range: 1.27–4.66 log10 CFU
Missing: 6.4%

Baseline bacterial burden Median: 6.79 log10 CFU
Range: 5.50–9.02 log10 CFU

Recovery duration posttreatment 12 wks (92%)
24 wks (8%)

Media type 7H10 (9.5%)
7H11 (26%)
7H11 selective (55.9%)
7H11 with AmphoB or cyclohexadiene (0.9%)
7H11 selective with charcoal (7.7%)

Fixed dosing (FIX) Time-variable mg/kg dose (13.4%)
Fixed mg/kg dose (86.6%)

Inoculation groups 1 group (5.6%)
2 groups (52.7%)
3 groups (18.3%)
4 groups (23.4%)

Contributing laboratory CSUa (26%)
JHUa (74%)

aCSU, Colorado State University; JHU, Johns Hopkins University.

Berg et al. Antimicrobial Agents and Chemotherapy

March 2022 Volume 66 Issue 3 e01793-21 aac.asm.org 4

https://aac.asm.org


model structure. Goodness-of-fit plots for the final model are presented in Fig. S2. The
final parameter-covariate relationships are shown below:

INTi;j ¼ INTTRT 1 1:4� ðINOCj � 3:29Þ 1 h INT;j (1)

SLPi;j ¼ SLPTRT 1 0:497� ðBASEj � 6:79Þ 1 h SLP;j (2)

Estimates for the treatment-specific fixed-effects parameters are presented in Table 4,
whereas random-effects estimates from the final model were 1.209 and 0.636 for v INT

and v SLP, respectively, with an estimated correlation of20.75.
To assess the predictive capability of the final model, a visual predictive check (VPC)

was performed with stratification by treatment (Fig. 2). Observed relapse proportions
were generally within the 95% prediction interval for the various regimens, although
underprediction was observed at a single treatment duration for a few regimens.
Additional VPCs with stratification by study-specific covariate values for INOC and
BASE as well as by study (Fig. S3 to S5) show a similar pattern of agreement between
observed and predicted values. Taken together, the VPCs indicate that the model
exhibits acceptable predictive performance.

Comparison of regimen efficacy. A bootstrap analysis was performed to compare
the efficacy of the various treatment regimens and obtain distribution-independent
precision estimates. Relapse probability versus treatment duration profiles derived at
the covariate median values using estimates obtained from each bootstrap replicate
are shown in Fig. 3 along with HRZE/HR as the clinical standard of care regimen.
Covariate-normalized T50 and T10 values were also obtained from each bootstrap repli-
cate and are depicted in Fig. 4A and B, respectively, with median and 95% confidence
intervals (CIs) and regimen rank order based on the median values provided in Table 5.
As observed in Fig. 3, efficacy profiles are generally well estimated for most treatment
regimens, although BPa exhibited a relatively large confidence interval attributed to
poorer precision in the BPa-specific SLP parameter secondary to the relatively small
number of treatment durations and mice available for this regimen. This is consistent
with the forest plots, which show that the T10 confidence interval for BPa is much wider
for this regimen compared to the other regimens. Although T10 generally showed a
slightly broader confidence interval for all regimens compared to T50, both parameters
showed the same three groupings based upon whether their confidence interval

TABLE 2 Summary of available data by regimen

Regimena No. of studies No. of mice
Assessed treatment
durations (months)

BPa 3 79 2, 3, 4
BPaL 4 139 2, 3, 4
HE 1 30 6, 9
HRE 1 31 3, 6
HRE/HR 1 45 3, 4.5, 6
HRZ/HR 15 531 2, 2.5, 3, 4, 5, 6
HRZE 5 105 2, 3, 4
HRZE/HR 9 199 3, 4, 4.5, 5, 6
HRZE/HRZ 1 15 3
HRZM 2 40 2, 3
HRZM/HRM 2 23 3, 6
HZE 1 29 3, 6
RMZ 1 36 3, 4, 5
RMZ/RM 5 215 3, 4, 5, 6
RMZ/RMb 1 15 2.5
RMZE 2 45 2, 3
RMZE/RM 1 15 3
aB, bedaquiline; E, ethambutol; H, isoniazid; L, linezolid; M, moxifloxacin; Pa, pretomanid; R, rifampin; Z,
pyrazinamide.

bMoxifloxacin 100 mg/kg dosed twice daily for a total daily dose of 200 mg/kg.
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overlapped the median estimate for HRZE/HR: (i) regimens with better performance
(HRZM, RMZ/RM, RMZ, RMZE/RM, RMZE, and BPaL), (ii) regimens with similar perform-
ance (HRZ/HR, HRZE, HRZE/HRZ, BPa, and HRZM/HRM), and (iii) regimens with poorer
performance (HE, HRE, HRE/HR, and HZE). Similarly, rank-ordering demonstrated that
BPaL was the best performing regimen for both T10 and T50 values (median values of
2.13 months and 2.69 months, respectively), with ranks for other regimens also consist-
ent except for HRZM and BPa (ranked 4th and 11th, respectively, based on T10, and 7th
and 9th, respectively, based on T50).

DISCUSSION

Historically, results from RMM studies have been reported in raw data tables with
limited supporting statistical analyses limiting comparisons, interpretation, and deci-
sion-making across RMM studies and regimens. Through the application of model-
based meta-analysis approaches to a large data set of 28 studies, we have been able to
improve the understanding and interpretability of regimen performance in the relaps-
ing mouse model of TB infection. Model-based analyses have a distinct advantage over

FIG 1 Relapse proportion by treatment duration across stratified by regimen and study. Each study is grouped with lines
representing the relapse-time course in a particular study. Points represent individual time points in a particular study. “RMZ/
RM_BIDM” denotes a version of the RMZ/RM regimen where moxifloxacin was administered at 100 mg/kg twice daily for a total daily
dose of 200 mg/kg. M, moxifloxacin; R, rifampin; Z, pyrazinamide.

TABLE 3 Listing of pivotal models during the primary analysis phase

Model no. Description OFVa AICb

3 Naïve model 1131.2 1141.2
25 “Full” treatment effect, no covariates 987.1 1033.1
35 “Reduced” treatment effects, no covariates 990.1 1018.1
37 Reduced treatment effects plus covariates 899.2 931.2
44 Final model 882.4 920.4
aOFV, objective function value.
bAIC, Akaike’s information criterion.
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standard statistical methods used to analyze RMM studies in that the underlying math-
ematical model allows researchers to compare regimens not solely based on the pro-
portions of mice in a treatment group relapsing at prespecified treatment durations,
but rather to obtain the relapse probability at any treatment duration (within the ap-
proximate range of durations experimentally explored). We accomplished this in the

FIG 2 Visual predictive check for the final model stratified by regimen. Black dots and solid lines represent the observed relapse proportion.
Blue lines represent the median prediction from the final model. The red shaded area represents the 90% prediction interval. “RMZ/
RM_BIDM” denotes a version of the RMZ/RM regimen where moxifloxacin was administered at 100 mg/kg twice daily for a total daily dose
of 200 mg/kg. M, moxifloxacin; R, rifampin; Z, pyrazinamide.

TABLE 4 Treatment-specific fixed-effects parameter estimates

Regimena

INTTRT SLPTRT

Estimate SE Estimate SE
BPa 2.270 1.110 21.96 0.892
BPaL 0.499 0.780 23.77 0.782
HE 21.50 2.420 23.00 0.270
HRE or HRE/HR 9.580 0.998 23.00 0.270
HRZ/HR 4.860 0.481 23.00 0.270
HRZE or HRZE/HRZ 4.700 0.438 23.23 0.317
HRZE/HR 4.700 0.438 23.00 0.270
HRZM 3.610 0.759 24.79 1.260
HRZM/HRM 3.610 0.759 23.00 0.270
HZE 12.70 1.330 23.00 0.270
RMZ/RM_BIDMb 0.654 1.160 23.11 0.492
RMZ 2.220 0.885 23.54 0.787
RMZ/RM 2.220 0.885 23.11 0.492
RMZE 2.110 0.771 23.54 0.787
RMZE/RM 2.110 0.771 23.11 0.492
aB, bedaquiline; E, ethambutol; H, isoniazid; L, linezolid; M, moxifloxacin; Pa, pretomanid; R, rifampin; Z,
pyrazinamide.

bMoxifloxacin 100 mg/kg dosed twice daily for a total daily dose of 200 mg/kg.
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present study through a relatively simple logistic regression approach, which utilized
observed binary relapse data for individual mice to estimate the INT and SLP parame-
ters that describe the logit-linear relationship between relapse probability and treat-
ment duration for each regimen. It is noted that this is analogous to that applied previ-
ously by Mourik et al. (15) and, more recently, by Mudde et al. (16), which utilized a
sigmoid maximum effect (Emax) model. Although based on slightly different assump-
tions, both mathematical models enabled the calculation of model-based parameters
of interest and the derivation of continuous relapse probability versus treatment dura-
tion profiles, as seen in Fig. 3. Such model-based outputs are highly informative when
interpreting regimen performance in RMM studies and enable quantitative compari-
sons to control regimens based on metrics, such as the T10 that was analogous to clini-
cally relevant endpoints of interest (i.e., treatment duration required to achieve an
acceptably low cure rate).

Aside from the similarity in the underlying mathematical models, the present analy-
sis extends beyond that of models based on single relapse studies (15, 16). Given the
significantly larger data set of more than 1500 mice from 28 studies, the present
model-based meta-analysis methodology was able to account for interstudy covariate
and random effects on the INT and SLP parameters. An advantage of this mixed-effects
modeling approach was that it partitioned the observed variability in the data into
interstudy variability and residual variability, which enabled quantification of inter-
study standard deviations for INT and SLP as well as exploration of study-level variables
as possible sources of the observed interstudy variability. The two significant covariates
identified during model development as being significant contributors to interstudy

FIG 3 Relapse probability versus treatment duration by regimen. Blue lines and areas represent the median and 95% confidence interval,
respectively, of relapse probability versus treatment duration profiles for each regimen as derived by bootstrap (N = 500 runs). Black lines
and areas represent HRZE/HR as the clinical standard of care regimen. For comparative purposes, all regimens are presented as normalized
to the median covariate values. “RMZ/RM_BIDM” denotes a version of the RMZ/RM regimen where moxifloxacin was administered at
100 mg/kg twice daily for a total daily dose of 200 mg/kg. E, ethambutol; H, isoniazid; M, moxifloxacin; R, rifampin; Z, pyrazinamide.
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variability, inoculum amount (INOC) and baseline lung bacterial burden (BASE),
accounted for more than 37% and 23% of the observed interstudy variability in INT
and SLP, respectively. The effect of each covariate on the overall relapse probability
versus treatment duration profile is illustrated in Fig. 5 for HRZE/HR under the assump-
tion of no interaction between covariate effects and treatment. In both cases, as the
covariate value increases, the curve shifts to the right, thereby increasing the probabil-
ity of relapse at a given treatment duration. This is intuitive, as it has been demon-
strated that administration of a higher inoculum of Mtb to BALB/c mice results in a
greater bacterial burden in the lung, a more severe infection, and a longer treatment
duration required to prevent relapse (17). Given the correlation between inoculum size
and bacterial burden at treatment start (Pearson correlation = 0.46), the joint effect
estimated for HRZE/HR across the observed combinations of these variables ranges
from 2.68 to 4.58 months for T50 and 3.41 to 5.74 months for T10. Hence, the potential
influence on study results is significant and highlights the importance of accounting
for these interstudy sources of variability when considering both the design (i.e., con-
trolling the inoculum size) as well as in the analysis and interpretation of the RMM
study data.

The ability to account for study-level covariates and quantify interstudy variability
highlights a further advantage to the model-based meta-analysis methodology applied
herein, in that unbiased regimen-specific parameters were estimated simultaneously
across data from all studies. Specifically, the treatment regimen fixed-effects parame-
ters correspond to the covariate-normalized relapse probability versus treatment dura-
tion profiles after adjustment for residual interstudy variability. This is significant in
that it allows for robust “apples-to-apples” comparisons of all regimens in the data set,
despite many not being evaluated together in the same experiment. That is important

FIG 4 Forest plots of T50 and T10 relapse probability by regimen. Median estimates and 95% confidence intervals from bootstrapped data sets (n = 500
runs) for (A) T50 and (B) T10 metrics. Regimens are in descending rank orders for metrics based on median value, with red and blue coloring indicating
regimens for which the confidence intervals are completely above or below the median value for HRZE/HR (included as the clinical standard of care
regimen). For comparative purposes, all regimens are presented as normalized to the median covariate values. “RMZ/RM_BIDM” denotes a version of the
RMZ/RM regimen where moxifloxacin was administered at 100 mg/kg twice daily for a total daily dose of 200 mg/kg. E, ethambutol; H, isoniazid; M,
moxifloxacin; R, rifampin; Z, pyrazinamide.
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considering the T50 estimates presented elsewhere for certain regimens (15, 16), as the
impact of the significant covariates identified herein as well as other influential covari-
ates that may not be known at this time, must be considered for cross-study compari-
sons. In this regard, it is noted that the ability to make cross-study comparisons within
this meta-analysis were bolstered by the presence of reference regimens (e.g., HRZ/
HR), which helped to partition interstudy variability from treatment effects, especially
for those regimens for which data were available from only a single study or where the
number of treatment durations was limited. In the latter case, even with a reference
regimen “anchor,” model stability often necessitated grouping similar regimens to-
gether to share an identical fixed-effect term for either INT or SLP. Groupings are indi-
cated in Table 4, although it is noteworthy that multiple regimens did not share the
same fixed effects for both parameters except for HRE and HRE/HR as well as HRZE and
HRZE/HRZ. Hence, aside from these regimens which are treated as identical (which is
reasonable based upon their similarity, being differentiated only on the presence and
absence of ethambutol beyond 2 months treatment duration), the structure of the final
model enabled the calculation of regimen-specific relapse probability versus treatment
duration profiles.

Regarding relative regimen efficacy, the results in Fig. 3 to 4 and Table 5 illustrated
that, after adjusting for covariate values and interstudy variability, trends in regimen ef-
ficacy follow expected patterns. For example, the established significance of rifampin
and/or pyrazinamide in shortening the treatment duration required to prevent relapse
with the standard of care HRZE regimen is observed by the stepwise decreases in the

TABLE 5 Regimen-specific T50 and T10 estimates in months and corresponding rank-order

Regimena

Model
estimate

Bootstrap
median

Bootstrap 95%
confidence interval

Rank order per
bootstrap median

Time to 50% relapse
BPaL 2.13 2.13 1.81 – 2.40 1
RMZ/RM_BIDMb 2.21 2.22 1.84 – 2.57 2
RMZE 2.60 2.57 2.21 – 2.87 3
RMZE/RM 2.67 2.64 2.35 – 2.92 4
RMZ 2.63 2.66 2.28 – 2.95 5
RMZ/RM 2.71 2.73 2.47 – 2.96 6
HRZM 2.75 2.76 2.15 – 3.22 7
HRZM/HRM 3.20 3.15 2.78 – 3.67 8
BPa 3.16 3.18 2.73 – 3.96 9
HRZE or HRZE/HRZ 3.46 3.47 3.26 – 3.78 10
HRZE/HR 3.57 3.55 3.39 – 3.7 11
HRZ/HR 3.62 3.61 3.49 – 3.73 12
HRE or HRE/HR 5.19 5.17 4.64 – 5.63 13
HZE 6.23 6.23 5.46 – 7.38 14
HE $9.00 $9.00 7.84 –$9.00 15

Time to 10% relapse
BPaL 2.72 2.69 2.46 – 2.93 1
RMZ/RM_BIDMb 2.92 2.84 2.50 – 3.28 2
RMZE 3.22 3.14 2.69 – 3.56 3
HRZM 3.21 3.21 2.26 – 3.98 4
RMZ 3.24 3.24 2.81 – 3.57 5
RMZE/RM 3.38 3.27 2.93 – 3.64 6
RMZ/RM 3.42 3.36 3.11 – 3.59 7
HRZM/HRM 3.94 3.82 3.46 – 4.32 8
HRZE or HRZE/HRZ 4.14 4.12 3.80 – 4.55 9
HRZE/HR 4.30 4.22 4.04 – 4.41 10
BPa 4.28 4.26 3.11 – 7.31 11
HRZ/HR 4.35 4.28 4.10 – 4.45 12
HRE or HRE/HR 5.93 5.84 5.32 – 6.28 13
HZE 6.97 6.92 6.09 – 8.07 14
HE $9.00 $9.00 8.52 –$9.00 15

aB, bedaquiline; E, ethambutol; H, isoniazid; L, linezolid; M, moxifloxacin; Pa, pretomanid; R, rifampin; Z, pyrazinamide.
bMoxifloxacin 100 mg/kg dosed twice daily for a total daily dose of 200 mg/kg.
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median T10 value from HE . HZE . HRE . HRZE. Similarly, the lack of differentiation
between HRZ/HR and HRZE/HR supports the generally accepted premise that etham-
butol adds little to the efficacy of the HRZ-based regimen in the BALB/c RMM. The
treatment shortening effect of fluoroquinolone-based regimens is also clearly seen,
with median T10 values between 0.40 months (HRZM/HRM) and 1.38 months (RMZ/RM
[twice-daily 100 mg/kg moxifloxacin]) shorter than HRZE/HR. This is notable in that the
treatment-shortening effect seen in initial/early mouse studies was a consideration in
advancing fluoroquinolone-containing RZ-based regimens into clinical trials with a 4-
month treatment duration compared to the 6-month treatment duration for the stand-
ard of care HRZE/HR regimen (18, 19). However, even under the optimistic assumption
of a direct one-to-one translation of relative regimen performance from mice to
humans, the efficacy estimates obtained from our model suggest that fluoroquino-
lone-containing RZ-based regimens may only be capable of shortening treatment du-
ration by approximately 1 month, consistent with the conclusions reached by Li et al.
and Wallis et al. (20, 21). These findings are also in line with the position outlined by
Lanoix et al., that the failures seen in phase 3 trials of 4-month fluoroquinolone-con-
taining RZ-based regimens do not reflect the poor predictive performance of the RMM
but rather an overly optimistic translation of RMM findings for these regimens to the
clinic (22). It should be noted, however, that the treatment-shortening effect of fluoro-
quinolones is dependent upon the overall drug combination administered because
the combination of moxifloxacin, rifapentine, isoniazid, and pyrazinamide has recently
been reported as an effective 4-month regimen (23). Overall, our findings demonstrate
that model-based analysis of RMM data provides results that are not only consistent
with previous studies but also build on the understanding and interpretability of RMM
studies by providing robust, quantitative, and meaningful measures of relative regimen
efficacy.

Although the model developed in the current study is limited to only those regi-
mens included in the historical CPTR data set, the model itself is not “static” and allows
for continuous updating to include data from new studies and regimens and may be
applied to inform the design of future RMM studies (through in silico trial simulation).
In the latter, further iterations of the model are being developed using emerging data
on new regimens to assess the contribution of various regimen components and help
select promising regimens for future study. An example of this approach is described
in this report where the model was updated through the incorporation of additional
data for the novel BPa and BPaL regimens. The model-based estimates show that the
novel two-drug BPa backbone is as efficacious in the RMM as the standard of care

FIG 5 Simulations of the model with a range of covariate effects. Simulations of covariate effects from range of data for (A) inoculum (log10 CFU/mL) and
(B) baseline bacterial burden (log10 CFU/mL).
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regimen and that the addition of linezolid as a third component provides significant
improvement in regimen efficacy (Table 5), with the resulting BPaL regimen being
superior to HRZE/HR. Of importance, though, the model-based estimates indicate that
BPaL may be no better than fluoroquinolone-based regimens at shortening overall
treatment duration. Consequently, while BPaL is a highly efficacious regimen, it may
not be capable of meeting the goal of treatment shortening to less than 2 months.
Prioritization of new regimens should be informed using the present model-based
approach through the accumulation of new RMM data on new candidate regimens
pooled with the existing historic data set, and subsequent model reestimation.
Multiple RMM studies are currently planned or ongoing that will generate additional
data, with the design of several studies directly informed using the current model.
Specifically, the mixed-effects logistic regression model has been applied to undertake
RMM trial simulations to evaluate attributes, such as number of mice per arm, number
of treatment durations, inoculum size, different hypothetical treatment regimens, and
inclusion of control arms. The relapse outcomes of simulated “virtual” mice are then
analyzed using the same model-based approach to assess the performance of the vari-
ous designs in terms of overall bias and precision on T50 and T10. This approach, which
has been highly instrumental in selecting and refining the design of RMM studies to
increase precision while minimizing the number of mice required for each study, will
be detailed in a subsequent report.

Although limitations of the analyses have been identified throughout this report, a
few key limitations are worthy of further acknowledgment. The data used in these
analyses were obtained from only two laboratories, which likely impacted the esti-
mated interstudy variability estimate and limited the ability to evaluate certain covari-
ates which were cofounded by the lab covariate (for example, Mtb strain). The inclu-
sion of more data from additional laboratories will help to refine this estimate and may
result in the identification of inter-laboratory differences. We also note the relatively
small amount of data available for some regimens, which may have been evaluated in
a single study, at limited time points, or in small numbers of mice (as low as 15 animals
total). While the impact of regimen representation in a small number of studies is com-
pensated by the estimation of covariate effects and the inclusion of a study-level ran-
dom effect, regimens with low numbers of relapse assessments and/or mice are not as
precisely estimated. The collection of additional data will help to improve the precision
of the estimates, which may readily be incorporated as data become available through
iterative model updates. Lastly, we emphasize that any inferences regarding the clini-
cal use of these regimens, based on the results presented herein, should be made cau-
tiously because the translation of findings from the RMM to predict clinical outcomes
requires consideration of multiple factors that are not addressed by these analyses.

Taken together, the model-based meta-analysis presented herein represents an
improvement in the analysis, understanding, and interpretability of data from relapsing
mouse model studies. By adjusting for key study-level differences and accounting for
interstudy variability, this approach generates robust, quantitative, and relevant met-
rics of interest, such as T50 and T10, respectively, that enhance the understanding and
interpretation of RMM study data and ultimately support decision making about regi-
men selection and prioritization.

MATERIALS ANDMETHODS
Data. The analysis was conducted based on data from studies conducted by the laboratories of

Anne Lenaerts (Colorado State University, CSU), Jacques Grosset, and Eric Nuermberger (Johns Hopkins
University, JHU). The experimental details of the contributed data sets have been described elsewhere
(13, 20, 24–31). Data sets corresponding to the 25 studies were standardized to a data template devel-
oped by the authors as part of the CPTR Initiative before aggregation into the pooled analysis data set
for initial model development. Data from three additional JHU studies were subsequently added to the
pooled data set, resulting in a total of 28 studies in the final data set (Table S1). All studies were per-
formed in BALB/c mice inoculated via aerosol inhalation with either Mtb Erdman TMC 107 (ATCC 35801)
(CSU) or mouse passaged H37Rv (ATCC 27294) (JHU) Mtb strains. In all studies, the primary endpoint for
each mouse was relapse as a binary (0/1) variable, determined based on whether Mtb growth was
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present or absent upon culturing a homogenate of lung tissue on solid media. Data from untreated con-
trol animals were excluded from the analysis.

A total of 17 unique regimens were available for analysis, including the following drugs and doses:
bedaquiline (BDQ, B) 25 mg/kg, ethambutol (EMB, E) 100 mg/kg, isoniazid (INH, H) 10 mg/kg or 25 mg/
kg, linezolid (LZD, L) 100 mg/kg, moxifloxacin (MXF, M) 100 mg/kg, rifampin (RIF, R) 10 mg/kg, pretoma-
nid (Pa) 100 mg/kg, and pyrazinamide (PZA, Z) 150 mg/kg. Treatments were administered orally once
per day on a 5 out of 7 days per week dosing schedule in all studies, except for one study that dosed
moxifloxacin 100 mg/kg twice daily for a total daily dose of 200 mg/kg. Regimen designations were
assigned based on standard abbreviations for regimen components with regimens containing an initial
2-month (8-week) intensive phase followed by a separate continuation phase delineated by a “/” accord-
ing to the convention (i.e., HRZE/HR). Treatment duration in months was included as the independent,
continuous variable for the analysis.

Study-level covariates included in the analysis data set included categorical variables (i.e., 12-week
versus 24-week recovery duration posttreatment, type of solid culture media used to assess Mtb growth,
fixed versus time-variable dosing, number of inoculation groups) and continuous variables (i.e., culture
incubation period [days], inoculum size for aerosol [log10 colony forming unit (CFU)], infection duration
before treatment [days], lower limit of detection for bacterial growth [log10 CFU], and average baseline
lung bacterial burden as determined in control animals at start of treatment [log10 CFU]). An additional
categorical “Lab” covariate designating the contributing laboratory was included due to the high degree
of within-lab correlation across studies of the following variables, which were excluded from analysis: av-
erage mouse age, Mtb strain, and Mtb cultivation method for inoculum preparation. Data imputation
was not performed except for one study missing the inoculum size which was therefore imputed as the
median value from the data set.

Model development. The model presented herein was developed in two stages, with the first stage
representing primary model development based on the initial data set of 25 studies, which was subse-
quently followed by a second stage whereby the model was updated based on data from three addi-
tional studies.

During each stage, exploratory data analysis was performed to evaluate the informational content of
the data set and assess consistency across studies. Independent, dependent, and treatment variables
were explored as well as relevant covariate information. Graphical outputs were used to help determine
significant trends in covariates to aid in the model-building process.

Model-based analysis was performed using a generalized linear mixed-effects modeling approach.
Specifically, a logistic regression model was developed with relapse treated as a binary 0 or 1 endpoint
corresponding to absence or presence of relapse, respectively, treatment duration as an independent
variable, and study as a random effect. Determination of model performance during development and
refinement was based on standard goodness-of-fit plots and summary statistics, as well as evaluation of
log likelihood-based metrics (i.e., OFV and AIC) (32). The general model structure is described by
Equations 3 to 5:

logit pi;j; kð Þ ¼ INTi;j 1 SLPi;j�ðTIMEk � 2Þ (3)

INTi;j ¼ INTTRT 1 INTCAT 1 INTCONT 1 h INT;j (4)

SLPi;j ¼ SLPTRT 1 SLPCAT 1 SLPCONT 1 h SLP;j (5)

Where pi,j,k is the probability of relapse for a given treatment/covariate combination i in study j at
treatment duration k; INTi,j is the intercept of the logit relapse probability after two months of treatment
for the ith regimen in the jth study with a study-level covariate effect; SLPi,j is the slope of the logit
relapse probability versus treatment duration for the ith regimen in the jth study with a study-level cova-
riate effect; TIME is the duration of treatment for the ith regimen; TRT is a categorical treatment indicator
(0 or 1 for the absence or presence of the regimen, respectively); CAT denotes a categorical covariate
effect; CONT denotes a continuous covariate effect; h is the random effect of the jth study for intercept
and slope, assumed to be N(0,v2).

Metrics of interest, namely, T10 and T50, were calculated as follows from the model estimates accord-
ing to Equations 6 and 7:

T10 ¼ 2months 1
log 0:1

ð1�0:1Þ � INTi;j

SLPi;j
(6)

T50 ¼ 2months� INTi;j

SLPi;j
(7)

Treatment-specific intercept (INT) and slope (SLP) values (viz., INTi and SLPi) were estimated where
supported. A 2-month offset was included (Equation 3) to account for regimens with a 2-month inten-
sive treatment phase followed by a continuation phase. This offset enabled regimens with a 2-month in-
tensive phase that was identical to another regimen (e.g., HRZE/HR and HRZE) to be modeled as having
the same INT value. Regimens with similar components were grouped for INT, SLP, or both parameters
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when necessary to maintain model stability while maximizing the ability to differentiate between
regimens.

Covariates were assessed for significance on INT and SLP terms using graphical and stepwise covari-
ate modeling during the first stage of the analysis. Stepwise covariate modeling using the likelihood ra-
tio test was performed using respective alpha levels of 0.05 and 0.01 for forward addition and backward
deletion phases. All covariates were evaluated through the inclusion of additive fixed effects on either
INT or SLP. Fixed effects for continuous covariates represent the estimated effect of the covariate at the
data set median value as all continuous covariates were centered for analysis. Covariate effects were
reevaluated during the second stage of the analysis to confirm that the inclusion of additional data did
not warrant a change in the model structure.

Model evaluation. Simulation-based diagnostics (i.e., visual predictive checks [VPCs]) were per-
formed on pivotal models to evaluate model predictive performance when stratified by regimens and
covariates. A total of 1000 replicates were simulated and 5th to 95th percentiles of the simulated values
were overlaid with the observed values to visually assess the agreement between the model-based
treatment duration-dependent relapse probabilities and the observed relapse proportions at the various
treatment durations.

To obtain estimates of model precision and support comparison of the various regimens, a nonpara-
metric bootstrap approach was employed. A total of 500 replicates of the analysis data set were generated
with replacement with stratification by regimen. Model parameters were obtained through reestimation
of the model on each replicated data set, with T10 and T50 estimates generated from the bootstrap model
estimates at the covariate reference value to generate covariate-normalized confidence intervals. Rank
orders were calculated across all regimens using the median T10 and T50 values from the bootstrap runs.

Simulations. Simulations were run to examine the effects of covariates on T10 and T50. Observed
inoculum values in the source data set were used to generate prediction curves from the model esti-
mates for HRZE/HR at the median baseline bacterial burden value. This was repeated for the observed
baseline bacterial burden at the median inoculum value, as well as for all combinations of inoculum and
baseline bacterial burden values in the data set.

Software and hardware. All data assembly and analysis were performed in R (33) as implemented
via the RStudio environment (34). Logistic regression was done using the glmer function in the lme4
package (35). Diagnostic metrics and plots were generated via the dx function in the LogisticDX (36)
package and using the ggplot2 (37) package.
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